Свойства древесины: механические, физические, технологические

Еще с древнейших времен, человек не мог обходиться без древесины. Не растратила она своего значения и на сегодняшний день, невзирая на то, что пришло на смену много современных и передовых материалов, которые вытеснили лесоматериалы из некоторых сфер ее применения. Однако, появились другие направления и сферы применения, новые технологии, где изделия из дерева просто незаменимы.

Основные свойства древесины

Как и многие стройматериалы, древесный материал отличается по характерным свойствам и особенностям. Свойства могут быть как позитивными, так и негативными показателями. Эти свойства обусловлены породой лесоматериалов.

Свойства древесины подразделяется на:

  1. Плотность.
  2. Твёрдость.
  3. Влажность.
  4. Усыхание.
  5. Набухание.
  6. Коробление.
  7. Раскалываемость.
  8. Износоустойчивость.
  9. Изгибистость.
  10. Деформирование.
  11. Теплопроводность.

Никакой строительный материал не располагает такими технологическими и декоративными свойствами, как изделия из дерева. Она податлива при обработке. Прочный и лёгкий материал, долгое время сохраняющий тепло и нежный запах. Но, как и всякий материал она имеет положительные и отрицательные свойства.

Строение древесины

Большая часть, до 90 % объема дерева, это — ствол, в состав которого входят:

  • кора. Её свойство — предохранять ствол от перепадов температуры, вторжения грибковых бактерий, испаряемости влаги и механических воздействий;
  • камбий. Неширокая прослойка живых клеток в виде кольца, имеющих способность к делению и приросту;
  • древесина. Составляющая ствола, по которой поступает влага от корней к кроне.

Технологические свойства древесины

Технические свойства характеризуют следующие показатели:

  • способность задерживать металлический крепеж. Чем плотнее древесный материал, тем прочнее в ней удерживаются крепежные детали;
  • износоустойчивость. Это — способность оказывать сопротивление разрушениям во время механического взаимодействия. Повышенной износоустойчивостью обладают торцы. Повышенная твердость и плотность позволяет древесине подвергаться незначительному износу.
  • раскалываемость. Свойство древесины под механическим воздействием делиться на части продольно волокнам. Сопротивление растрескиванию повышается с увеличением вязкости. Это свойство имеет положительный показатель. Некоторые сорта можно заготавливать только методом раскалывания. У раскалываемости есть и негативное свойство: при использовании металлических креплений, могут образовываться расколы.

Плотность древесины

Соразмерность веса пиломатериала к его объёму и есть плотность. Устанавливается плотность в кг/м3, и напрямую подчиняется влажности.

Плотность подразделяют на:

  • малую;
  • среднюю;
  • высокую плотность.

Твёрдость древесины

На твёрдость влияют следующие показатели:

  • порода;
  • условия произрастания дерева. Один и тот же вид породы может быть разной твердости, если деревья росли в различных климатических условиях;
  • увлажненность лесоматериалов.

Твердость у одного ствола может быть разной: в зависимости от того, какой применяется распил. Торцы твёрже чем тангентальная и радиальная поверхность.

Износостойкость и гибкость древесины

  • износостойкость — свойство оказывать сопротивление истиранию материала во время трения. Истирание с боков бывает больше чем с торцов. Наиболее твёрдая и плотная древесина менее всего подвергается изнашиванию. Повышенная влажность — хороший помощник износу.
  • гибкость — одно из свойств деревянных заготовок — изменять форму под силовым воздействием извне. Загибание основано на возможности древесины поддаваться деформации под воздействием гибочного оборудования. Процедура загибания проходит легче и быстрее, когда древесину предварительно увлажняют и нагревают;
  • ударная вязкость — свойство поглощения удара без дефляции.

Тепловые свойства

К таким свойствам относятся следующие показатели:

  • тепловая мощность — это способность древесного материала накапливать тепло;
  • теплопроводность — транспозиция тепловой энергии молекулами вещества;
  • температуропроводность — равное распределение температуры по всему объёму;
  • термическое расширение— изменение линейных размеров и конфигурации при изменении температуры.

Влажность древесины

Влажность — это процентное соотношение количества влаги в определённом объёме древесного материала, к такому же объёму совершенно сухого материала. Свойства по влажности у каждой породы индивидуальные.

Влажность подразделённая по степеням:

  • мокрая степень. Продолжительное время содержащиеся в воде лесоматериалы;
  • свежераспиленная;
  • воздушно-высушенная;
  • базовая степень.

Усушка, разбухание и коробление пиломатериала

  1. Усушка. Снижение параметров при устранении влаги. Полная усушка, для дальнейшей обработки древесного материала должна быть в диапазоне от 11 до 17 %. Процент усушки обязательно учитывается при изготовлении пиломатериалов.
  2. Коробление. Преобразование формы при высушивании, складировании и опиловке. В основном, коробление возникает из-за разной величины усушки и структурных направлениях.
  3. Разбухание. Это — свойство прибавления размеров при увеличении влаги. Разбухание протекает до особого предела поглощаемости влаги.

Разбухание — одно из негативных свойств древесины. Хотя в отдельных случаях разбухание играет существенную роль: создает уплотнение соединениям в лодках, бочонках и кадках.

Физические свойства древесины

1. Плотность.

Абсолютное значение, измеряемое соотношением веса к объему. Плотность напрямую зависит от разновидности породы и количества влаги. Чем меньше влажность, тем ниже плотность.

2. Теплопроводность.

Свойство древесины пропускать тепло от корней до кроны. На качество теплопроводности влияют такие факторы:

  • температура воздуха;
  • внутренняя влажность;
  • насыщенность;
  • количество теплоты.

3. Звукопроводность.

Особенное свойство лесоматериалов — пропускать звук. Звукопроницаемость у древесины повыше, чем у некоторых материалов. Этот показатель необходимо принимать во внимание в строительстве, где крайне важна звукоизоляция стен и столярных изделий.

4. Электропроводность.

Положительное свойство пиломатериалов пропускать ток. На электропроводность влияют влажность, порода, направление волокон и температура. Сухая древесина не пропускает электроток, что даёт возможность использовать ее как изоляционный материал.

5. Влажность.

Степень увлажненности пиломатериалов, это — показатель качества и износостойкости изделий из древесины. Отличительное свойство: чем меньше содержание влажности, тем дольше она не подвергается гниению.

6. Коррозионная стойкость.

Отсутствие коррозии — немаловажное свойство у изделий, изготовленных из древесины. Особенно это касается тех изделий, которые подвергаются эксплуатации на открытом воздухе.

7. Цвет, блеск, запах и текстура.

Данные свойства позволяют зрительно определять породу древесины и имеют чисто художественное значение.

прочность древесины при статическом изгибе

Для испытания на статический изгиб применяются образцы в форме бруска размерами 20X20X300 мм. Неподвижные опоры и ножи должны иметь закругление радиусом 15 мм; расстояние между центрами опор l = 24 см. После измерения посредине длины сечения (ширины b и высоты h) образец располагают на опорах и нагружают в двух точках на расстоянии 8 см от каждой опоры, равномерно со скоростью 700 ±150 кГ/мин на весь образец, который доводится до полного излома. По шкале машины отсчитывают максимальную Нагрузку Рmах с точностью 1 кГ. Предел прочности при статическом изгибе существенно зависит от влажности. При изгибе в древесине возникают нормальные напряжения (на растяжение и сжатие вдоль волокон) и касательные напряжения (на скалывание вдоль волокон). Первые достигают максимума в крайних волокнах, наиболее удаленных от нейтральной плоскости, а вторые — в нейтральной зоне, которая теоретически должна проходить посредине высоты бруска. В древесине из-за различий прочности при растяжении и сжатии вдоль волокон нейтральная плоскость смещается в сторону растянутой зоны, что обусловливает неравенство нормальных напряжений (на растяжение и сжатие вдоль волокон). Деформация при изгибе внешне выражается прогибом образца и измеряется стрелой прогиба. Так как прочность древесины при сжатии вдоль волокон значительно меньше, чем прочность при растяжении, разрушение при изгибе начинается в зоне сжатия в виде складок, хотя на глаз оно редко заметно. Окончательное разрушение происходит в зоне растяжения и заключается в разрыве или отщепе крайних волокон и полном изломе образца. Излом древесины высокого качества волокнистый или защепистый, при низком качестве — раковистый, почти гладкий. Защепистость излома более резко выражена в растянутой зоне образца; пучки волокон там крупнее и длиннее; в сжатой зоне, наоборот, эти пучки мелкие и короткие. В табл. приведены показатели предела прочности при статическом изгибе для древесины основных наших лесных пород. Прочность древесины при статическом изгибе по величине занимает промежуточное положение между прочностью при растяжении и сжатии вдоль волокон и может быть в среднем для разных пород принята равной около 900 кГ/см2. Если прочность при сжатии вдоль волокон принять за единицу, прочность при статическом изгибе будет примерно в 2 раза, а прочность при растяжении вдоль волокон — в 2,7 раза выше. Предел пропорциональности при статическом изгибе составляет в среднем 0,7 от предела прочности.

Механические свойства древесины

Важные свойства, влияющие на устойчивость и надёжность строений и деревянных изделий.

  • Прочность.

Сопротивление древесных материалов к разрушениям под воздействием механических усилий.

  • Твердость.

Это свойство зависит от сопротивления древесного материала к проникновению твердых тел. Чем тверже древесина, тем сложнее она поддаётся обработке.

  • Ударная вязкость.

Поглощение ударов без нарушений целостности.

прочность древесины при сдвиге

Надежность соединения элементов деревянных конструкций и изделий во многих случаях определяется способностью древесины сопротивляться действию касательных напряжений. Для того чтобы при механических испытаниях древесины установить предельные значения касательных напряжений, следовало бы создать условия чистого сдвига рабочей части образца. Однако это сопряжено со значительными трудностями в технике эксперимента. Вместе с тем для инженерных расчетов можно ограничиться результатами более простых испытаний на сдвиг. При этих испытаниях к образцу прикладываются две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости. Учитывая волокнистое строение древесины, различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперек волокон и перерезание древесины поперек волокон. Схемы действия сил при этих испытаниях, а также плоскости разрушения, которые задаются принудительно. Каждый вид испытаний на сдвиг может быть проведен не только в радиальном, как показано на схемах, но и в тангенциальном направлении.

Трещины

Это продольные разрывы, возникающие под воздействием внутренних напряжений.

Трещины подразделяют по следующим свойствам:

  • Метиковые.

Радиальные трещины внутри ствола дерева. Наблюдаются у всех пород, особенно этим страдает перестоялый древостой. Трещины появляются по мере роста дерева и представляют прерывающиеся разломы по длине сортамента.

  • Отлупные.

Отслаивание древесного волокна внутри ядра и отслоение спелой древесины у растущего дерева. Отлупные трещины можно встретить у каждой породы. До конца не установлены причины возникновения таких трещин.

  • Морозные.

Продольные разрывы извне на стволе молодого дерева. В основном, морозные трещины преобладают у лиственных пород и очень редко у хвойных. Трещины появляются при резких перепадах зимних температур.

  1. Трещины усушки.

Появляются под воздействием неравномерной усушки и выявляются при распиловке сортамента.

Трещины — основная причина понижения прочности лесоматериалов, используемых в строительстве. Кроме того, трещины содействуют вторжению грибных заболеваний и попаданию влаги внутрь материала.

Пороки формы ствола

Стволы деревьев также обладают определёнными пороками:

  • Сбежистость.

Ствол дерева, во время роста, постепенно уменьшается в диаметре от нижней части к кроне. Когда, при каждом метре роста, диаметр ствола убывать больше чем на 1 см, то это — сбежистость.

Лиственные породы больше подвержены такому пороку нежели хвойные породы Сбежистость больше всего проявляется у деревьев растущих на свободе или в мелколесье. Чем гуще лес, тем поменьше на деревьях сбежистости. Данный порок повышает величину отходов и снижает прочность.

  • Закомелистость.

Если диаметр ствола в нижней части дерева превышает диаметр того же ствола на высоте не менее метра в 1,2 раза, то это называется закомелистостью.

  • Овальность.

Ствол дерева имеет форму эллипса, а максимальный диаметр больше минимального в 1,5 раза. Овальность вызывает у дерева крен и изменяет строения древесины.

  • Наросты.

Локальное утолщение появляется в результате негативного воздействия:

  • грибковых заболеваний;
  • микобактерий;
  • вирусных инфекций;
  • химических факторов;
  • радиоактивности;
  • различных повреждений.
  • Кривизна.

Все древесные породы страдают искривлением стволов. Простая кривизна имеет один изгиб, сложная — несколько изгибов ствола.

Кривизна относится к отрицательным свойствам древесины.

Цвет и текстура древесины

Сосна, лиственница, дуб и др. отличаются ярко выраженной окраской ядровой части; ель, береза, липа и др. не имеют такой окраски. Цвет древесины с течением времени меняется под действием физико-химических факторов. Так, например, только что спиленная ольха за короткий промежуток времени на воздухе из светлорозовой становится желтовато-красной. Это изменение окраски происходит в результате окисления (под воздействием на древесину воздуха и света) находящегося в клетках древесины ольхи красящего вещества. При действии раствора солей железа древесина некоторых пород (дуб, каштан) темнеет, так как в ней содержится таннин. Ненормальный цвет древесины, темные или цветные пятна или полосы являются признаком развития в ней грибов.
Древесина хвойных пород обладает в основном простой и однообразной текстурой (рисунком), древесина лиственных пород — более сложной. Древесные породы, такие, как дуб, ясень, каштан, орех, сосна, лиственница, тисе и др., дают красивую текстуру на тангентальном разрезе; клен, бук, чинар и др. дают красивую текстуру на радиальном разрезе. Благодаря богатству и разнообразию текстуры древесины ряд пород высоко ценится о столярно-отделочных работах.

Пороки строения древесины

Пороки подразделяются на группы. В группе находятся определённые виды пороков.

Искаженное месторасположение древесного волокна и годичных слоёв

  • Наклон волокон.

Наклонное положение волокон значительно понижает прочность древесины, усиливает усушку сортамента вдоль и является поводом появления винтовой искривлённости и закручивания пиломатериалов. Наклон волокон существенно усложняет обработку пиломатериала и уменьшает потенциал древесины к изгибу.

  • Свилеватость.

Это волнистое и хаотичное распределение волокон.

Свилеватость уменьшает прочность на растяжение, повышает ударную вязкость и противодействие раскалыванию. Механическое воздействие на свилеватый материал очень затруднён. Однако, у этого порока есть и свои положительные свойства — красивая текстура.

  • Завиток.

Искажение годичных слоёв около сучков и наростов.

  • Реактивная древесина.

В склонённых и кривых стволах формируется редкостная древесина, которая получила название реактивной. Этот изъян происходит под воздействием силы тяжести, которая вызывает переназначение веществ и подавляет процесс роста.

  • Крен.

Крен ухудшает уровень качества древесного сырья, используемого в целлюлозно-бумажной промышленности.

  • Тяговая древесина.

Тяговая древесина усложняет обработку материалов. Во время обработки, образуются мохнатые и замшелые поверхности, которые, отделившись во время резания, заполняют углубление и препятствуют вращению пил.

Сучки

Сучки — основной, сорт определяющий, порок лесоматериалов. Сучки классифицируют как значительный порок, снижающий стоимость древесного материала.

К сучкам относят оставшиеся основания ветвей. Неважно в каких количествах, но сучки всегда находятся в лесоматериалах. Количество сучков, находящихся в стволе, учитывая их состояние, размеры и распределение по длине, зависят от древесной породы, условий место произрастания, климата, густоты лесонасаждения и прочих факторов.

По уровню зарастания, сучки делятся на два типа:

  • открытые;
  • заросшие.

Нерегулярные анатомические образования

  • Ложное ядро.

Тёмная внутренняя часть ствола дерева — это ложное ядро. Кромка ложного ядра не соприкасается с границей годичных колец. От заболони ядро отгорожено тёмной каёмкой.

Источником возникновения порока являются:

  • возрастное разделение тканей;
  • реакция на ранение;
  • влияние грибковых заболеваний;
  • воздействие холодной погоды.

Ложное ядро портит наружный вид изделия и уменьшает возможность лёгкого загиба. Ядро устойчиво к гниению.

  • Внутренняя заболонь.

В районе сердцевины может сформироваться несколько прилегающих годичных слоёв, схожих с заболонью по цвету и иным свойствам. Внутренняя заболонь появляется из-за нарушения естественной деятельности клеток, вызванное морозами.

  • Пятнистость.

У некоторых деревьев из-за повреждения структуры, влияния химических факторов, грибковых заболеваний и засилья насекомых появляются небольшие темноокрашенные зоны на древесине.

Пятнистость особого воздействия на какие — либо свойства не оказывает.

  • Сердцевина.

В круглых лесоматериалах существование сердцевины — обычное свойство и явление неотвратимое. Сердцевина значительно снижает прочность деталей с небольшим сечением. В крупных распиленных заготовках нахождение сердцевины нежелательный фактор. Сердцевина быстро поддаётся загниванию.

  • Смещенная сердцевина.

Это — беспорядочное месторасположение сердцевины, препятствующее массовому использованию материалов. Данное свойство относится к отрицательным показателям.

  • Двойная сердцевина.

В раскроенном материале можно обнаружить две сердцевины. Каждая сердцевина обладает своими личными годичными слоями. По краю ствола обе сердцевины окружены единой системой годичных слоёв.

Выпиленные заготовки с двойной сердцевиной, чаще и посильнее коробятся, кроме того могут возникнуть трещины.

  1. Пасынок и глазки. Пасынок. Это — плохо растущая или омертвевшая двойная вершина ствола. Пасынок разрушает равномерность волокон древесины, а в пиломатериалах — целостность.
  2. Глазки. Разделяют глазки на разбросанные — единичные и групповые — от 3 и более глазков. Глазки уменьшают прочность на изгиб и ударную вязкость.

Раны

  • Сухобокость.

Это — внешнее частичное омертвение ствола. Данный порок появляется в результате содранной коры, солнечного ожога или перегревания коры. Сухобокость нарушает форму деревьев, образует завитушки, ухудшает цельность древесины и понижает выход.

  • Прорость.

Это — заживающая или уже зажившая рана.

Прорость разрушает цельность древесины, что влечёт за собой кривизну и искажение годичных слоёв.

  • Рак.

Рана, появившаяся в результате грибковых заболеваний и присутствия бактерий.

При раке меняется правильная форма деревьев.

Необычные отложения в древесине

  • Засмолок.

Это — щедро напитанный смолой участок древесины, образованный после ранения хвойного дерева.

Засмолок имеет незначительную влагопроницаемость и лёгкое впитывание воды. Положительным свойством такой древесины является увеличенная стойкость к гнили, но при этом — плохо поддаётся отделке и приклеиванию.

  • Кармашек.

Это — углубление в глубине годичных слоёв, наполненное смолой.

Стекающая из полости смола затрудняет отделку и склейку заготовок. Такое свойство лесоматериалов считается отрицательным.

  • Водослой.

Водослойная древесина различается от здоровой увеличенной усушкой и разбуханием. Свойство характеризуется как отрицательное.

таблица прочности древесины при сжатии вдоль волокон

Порода Предел прочности, кГ/см2, при влажности Порода Предел прочности, кГ/см2, при влажности 15% 30% и более 15% 30 % и более Лиственница 550 255 Дуб 510 310 Сосна 415 210 Ясень 500 325 Ель 390 195 Орех грецкий 485 240 Кедр 360 185 Бук 475 260 Пихта сибирская 345 175 Береза 465 225 Акация белая 665 415 Вяз 405 250 Граб 530 265 Липа 400 240 Клен 520 280 Ольха 385 235 Груша 515 265 Осина 375 190 Тополь 345 180 При однофазном деформировании на диаграмме хорошо выражен приблизительно прямолинейный участок, продолжающийся почти до достижения максимальной нагрузки, при которой образец древесины разрушается. При трехфазном деформировании процесс деформирования древесины при сжатии поперек волокон проходит три фазы: первая фаза характеризуется на диаграмме начальным, примерно прямолинейным участком, показывающим, что в этой стадии деформирования древесина условно подчиняется закону Гука, как и при однофазном деформировании; в конце этой фазы достигается условный предел пропорциональности; вторая фаза характеризуется на диаграмме почти горизонтальным или слабонаклонным криволинейным участком; переход из первой фазы во вторую более или менее резкий; третья фаза характеризуется на диаграмме прямолинейным участком с крутым подъемом; переход из второй фазы в третью в большинстве случаев постепенный. По характеру деформирования при радиальном и тангенциальном сжатии породы можно подразделить на две группы: к первой группе относятся хвойные и кольцесосудистые лиственные породы (за исключением дуба), а ко второй — рассеяннососудистые лиственные породы. Древесина хвойных пород (сосна, ель) и колъцесосудистых лиственных пород (ясень, ильм) при радиальном сжатии дает диаграмму, характерную для трехфазного деформирования, а при тангенциальном сжатии — диаграмму однофазного деформирования. Отмеченный характер деформирования древесины названных пород может быть объяснен следующим. При радиальном сжатии деформация первой фазы протекает в основном из-за сжатия ранней зоны годичных слоев, слабой в механическом отношении; первая фаза продолжается до тех пор, пока стенки элементов ранней зоны не потеряют устойчивости и не начнут сминаться. С потерей устойчивости этих элементов начинается вторая фаза, когда деформация протекает в основном в результате смятия элементов ранней зоны; это происходит при почти неизменной или мало возрастающей нагрузке. По мере вовлечения в деформацию элементов поздней зоны годичных слоев вторая фаза плавно переходит в третью. Третья фаза протекает главным образом за счет сжатия элементов поздней зоны, состоящей преимущественно из механических волокон, которые могут сминаться только при больших нагрузках. При тангенциальном сжатии деформирование происходит с самого начала за счет элементов обеих зон годичного слоя, причем характер деформирования, естественно, определяется элементами поздней зоны. В конце деформирования наступает разрушение образца, яснее выраженное у древесины хвойных пород: образцы обычно выпучиваются в сторону выпуклости годичных слоев, которые при тангенциальном изгибе ведут себя, как кривые брусья при продольном изгибе. Среди кольцесосудистых лиственных пород отмеченным закономерностям не подчиняется дуб, древесина которого при радиальном сжатии деформируется по однофазному типу, а при тангенциальном обнаруживает тенденцию к переходу на трехфазное деформирование. Это объясняется тем, что при радиальном сжатии сильное влияние на характер деформирования оказывают широкие сердцевинные лучи. При тангенциальном сжатии тенденция к переходу на трехфазное деформирование объясняется радиальной группировкой мелких сосудов в поздней зоне. Древесина рассеяннососудистых лиственных пород (березы, осины, бука) обнаружила трехфазное деформирование как при радиальном, так и при тангенциальном сжатии, что, по-видимому, надо объяснить отсутствием заметной разницы между ранней и поздней зонами годичных слоев. У древесины граба наблюдается переходная форма деформирования (от трехфазного к однофазному); очевидно, в этом случае сказывается влияние ложношироких сердцевинных лучей. Начало разрушения древесины можно наблюдать лишь при однофазном деформировании; при трехфазном деформировании древесина может уплотниться до четверти начальной высоты без видимых следов разрушения. По этой причине при испытаниях на сжатие поперек волокон ограничиваются определением напряжения при пределе пропорциональности по диаграмме сжатия, не доводя образец до разрушения. Древесину испытывают двумя методами: при сжатии по всей поверхности образца и при сжатии на части длины, но по всей ширине (смятие). Для испытаний на сжатие поперек волокон изготовляют образец такой же формы и размеров, как и при сжатии вдоль волокон; годичные слои на торцах в этом образце должны быть параллельны одной паре противоположных граней и перпендикулярны другой паре. Образец располагают на опорной части машины боковой поверхностью и подвергают ступенчатой нагрузке по всей верхней поверхности со средней скоростью 100 ±20 кГ/мин. Деформацию древесины мягких пород измеряют индикатором с точностью 0,005 мм через каждые 20 кГ нагрузки и твердых пород — через 40 кГ; испытание продолжается до явного перехода предела пропорциональности. На основании парных отсчетов (нагрузка-деформация) вычерчивают диаграмму сжатия, на которой определяют с точностью до 5 кГ нагрузку при пределе пропорциональности как ординату точки перехода прямолинейного участка диаграммы в явно криволинейный. Условный предел прочности при сжатии поперек волокон подсчитывают путем деления найденной указанным способом нагрузки при пределе пропорциональности на площадь сжатия (произведение ширины образца на его длину). Для испытаний на смятие применяют образец в форме брусочка квадратного сечения 20X20 мм, длиной 60 мм. Нагрузка на такой образец передается по всей ширине через стальную призму шириной 2 см, помещаемую посредине образца перпендикулярно длине; прилегающие к образцу ребра призмы имеют закругления радиусом 2 мм. В остальном порядок и условия испытания те же, что и по первому способу, но условный предел прочности подсчитывается путем деления нагрузки при пределе пропорциональности на площадь сжатия, равную 1,8 а, где а — ширина образца, 1,8 — средняя ширина нажимной поверхности призмы в сантиметрах. Условный предел прочности при смятии поперек волокон получается на 20—25% выше, чем при сжатии; это объясняется дополнительным сопротивлением от изгиба волокон у ребер призмы. При третьем случае сжатия поперек волокон показатели условного предела прочности немного превышают показатели, полученные во втором случае в результате дополнительного сопротивления скалыванию поперек волокон у ребер штампа, идущих параллельно волокнам древесины.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]